
CHIME: A Cache-Efficient and High-Performance
Hybrid Index on Disaggregated Memory

Xuchuan Luo1,2, Jiacheng Shen3, Pengfei Zuo4, Xin Wang1,6, Michael R. Lyu5, Yangfan Zhou1,2

1School of Computer Science, Fudan University
2National Key Laboratory of Parallel and Distributed Computing, China

3Duke Kunshan University 4Huawei Cloud 5The Chinese University of Hong Kong
6Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Disaggregated Memory (DM)

Compute Nodes (CNs)

Memory Nodes (MNs)

Resource utilization
 Elasticity

Benefits:

…

Fast Network (e.g., RDMA, CXL)

…

2

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

Range Indexes on Disaggregated Memory

3

[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.
[3] Pengfei Li et al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.

Existing range indexes on DM can be classified into two types:

KV KV… KV KV…
…

Nodes / Models

Store KV items contiguously
within large leaf nodes

KV-contiguous

KV KV KV

Nodes

…

Store KV items discretely

KV-discrete

Range Indexes on Disaggregated Memory

4

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

KV KV KV

Nodes

…
KV KV… KV KV…

…

Nodes / Models

Computing-side caches are adopted to reduce access latency:

Caches

MNs

CNsCaches

MNs

CNs

KV-contiguousKV-discrete

5

MNs

CNs Caches Caches

Motivation: A Trade-off for Range indexes on DM

MNs

CNs

KV KV KV

Nodes

…
KV KV… KV KV…

…

Nodes / Models

There is a trade-off between read amplifications and cache consumption:

KV-contiguousKV-discrete

Radix Tree[1]

B+ Tree[2] Learned
Index[3]Ca

ch
e

Co
ns

um
pt

io
n

Read Amplificationlow

high

high

Ca
ch

e
Co

ns
um

pt
io

n

Read Amplification

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

low

high

high

6

MNs

CNs Caches Caches

KV KV KV

Nodes

…
KV KV… KV KV…

…

Nodes / Models

There is a trade-off between read amplifications and cache consumption:

Low read amplifications

High cache
consumption

Caches
Cache an address
for each KV item Caches

Cache an address
for each leaf node

Low cache
consumption

High read amplifications
KV

Read the single KV item

Search

Read the entire leaf node

Search

KV KV…

KV-contiguousKV-discrete

Motivation: A Trade-off for Range indexes on DM

Ca
ch

e
Co

ns
um

pt
io

n

Read Amplification

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

low

high

high

7

Root Cause: The alignment between keys and memory addresses

Key1 Key64Key2 …

Leaf node:

KV-contiguous

min <= Keyi < max (i=1,2,…,64)

Addr1 <= Addri < Addr1 + leaf_size

aligned

Key1
Key64

Key2

…

Addri is arbitrary

not aligned

KV-discrete

min <= Keyi < max (i=1,2,…,64)

Motivation: A Trade-off for Range indexes on DM

Ca
ch

e
Co

ns
um

pt
io

n

Read Amplification

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

low

high

high

8

Root Cause: The alignment between keys and memory addresses

Use hashing to
make it precise?

KV KV… KV KV…
…

Nodes / Models

Caches Can compress the cacheCaches

MNs

CNs

KV KV…

Search

But is too imprecise to clients

Key1 Key64Key2 …

Leaf node:

min <= Keyi < max (i=1,2,…,64)

Addr1 <= Addri < Addr1 + leaf_size

aligned

KV-contiguous

Motivation: A Trade-off for Range indexes on DM

Ca
ch

e
Co

ns
um

pt
io

n

Read Amplification

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

low

high

high

9

Straightforward Idea

Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes

Requirements:
• Few remote accesses
• Low read amplifications
• High space efficiency

• KV-contiguous

B+ Tree

Leaf nodes

B+ tree
internal nodes

…
Leaf nodesHash table Hash table

• Precise alignment

Hybrid Index

Ca
ch

e
Co

ns
um

pt
io

n

Read Amplification

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

low

high

high

10

Widely Choose a Suitable Hashing Scheme

Remote accesses Read amplifications & Space efficiency

Many accesses:
• Cuckoo hashing
• Clustering hashing
• …

Few accesses:
• Simple associativity
• Hopscotch hashing[1]

• FaRM[2]

• RACE[3]

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.
[2] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014.
[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory. ATC 2021.

Hash table

B+ tree
internal nodes

…
Hash table

Hopscotch hashing best fits the requirements

Ca
ch

e
Co

ns
um

pt
io

n

Read Amplification

Radix Tree[1]

B+ Tree[2] Learned
Index[3]

low

high

high

11

Viable Idea

Use a hybrid index combining a B+ tree with hopscotch hashing

Cache-efficient
Benefit:• KV-contiguous

Hybrid Index

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

• Precise alignment
• High load factor

Bandwidth-efficient
 Space-efficient

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

neighborhood

Challenge 1: Complicated Optimistic Synchronization

Various granularities in reads/writes complicate the optimistic synchronization

A1 B1 C1 D2 E4 F5

0 1 2 3 4 65 7
…

A1 B1 C1 X1 D2 F5 E4 …

hop range Write a hop range
to insert a key

Read a neighborhood
to search a key …and so on

Insert a key X1
hopping

D2 E4

12

Write an entire node
to split the node

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

Check

Challenge 1: Complicated Optimistic Synchronization

Various granularities in reads/writes complicate the optimistic synchronization

Invisible to fine-grained
neighborhood reads

Versions / Checksum… ……
Data Block:

13

Read a neighborhood
to search a key

Maintain

Write a hop range
to insert a key

Write an entire node
to split the node

Difficult to maintain for
various hop range writes

Fetch the hop range

Fetch the neighborhood

Metadata KV entries

Challenge 2: Extra Metadata Accesses

Metadata for B+ trees and hopscotch hashing induces extra remote accesses
Search a key

Fetch leaf metadata

Insert a key

Fetch a vacancy bitmap

14

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

Extra remote memory
accesses to fetch metadata

Fetch the neighborhood

Challenge 3: Read Amplifications of Hopscotch Hashing

Hopscotch hashing still incurs read amplifications compared with reading a KV

Metadata A1 B1 C1 X1 D2 …

Search a key X1

Still need to fetch all items
within the neighborhood

15

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

Challenge Summary

1. Complicated Optimistic Synchronization

2. Extra Metadata Accesses

3. Read Amplifications of Hopscotch Hashing

16

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

The CHIME Design

1. Complicated Optimistic Synchronization

2. Extra Metadata Accesses

3. Read Amplifications of Hopscotch Hashing

Solution 1: Three-Level Optimistic Synchronization

Solution 2: Access-Aggregated Metadata Management

Solution 3: Hotness-Aware Speculative Read

17

MNs

CNs

Caches

Clients

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

Hotspot Buffer

CHIME

…

Three-level Optimistic Synchronization

18

MNs

CNs

Readers … Writers …
Synchronization Overview

KV entries

Neighborhood read Node write Entry write Hop range write

Writers are synchronized by a lock

Readers detect node/entry/hop range writes, respectively

Leaf Node:

Decompose it into
three levels

Search a key

Reading a neighborhood

Three-level Optimistic Synchronization

Level 1: Detect the node write

KV entries

Problem: Readers cannot perceive the node write

Node:

Writing the entire node
Split the node

19

Writing the entire node

Three-level Optimistic Synchronization

Level 1: Detect the node write Problem: Readers cannot perceive the node write
 Solution: Use cache line versioning[1]

Node:

Ver.Entry: Ver.

Ver. Ver. Ver.

Cache Line

Reading a neighborhood
Readers:
• Check only fetched versions
• Retry if they cannot match

Writers:
• Increment all versions in the node

Search a key

20[1] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014.

Split the node

Three-level Optimistic Synchronization

Level 2: Detect the entry write

Entry: Ver. Ver.

Ver.
Node:

Ver. Ver.

Cache Line

Reading a neighborhood

Writing an entry
Update a key

Problem: Writers have to update all versions in the node

Search a key

21

Three-level Optimistic Synchronization

Level 2: Detect the entry write Problem: Writers have to update all versions in the node
 Solution: Use two-level cache line versioning

Entry: Ver. Ver.

Ver.
Node:

Ver. Ver.

Cache Line

Reading a neighborhood

Writing an entry
EVNV

4 bit 4 bit

Readers:
• Check the node write via NVs
• Check the entry write via EVs

Writers:
• Increment NVs during a node write
• Increment EVs during an entry write

Search a key

Update a key 22

Reading a neighborhood

Three-level Optimistic Synchronization

Level 3: Detect the hop range write

A1 B1 C1 D2 E4 F5

0 1 2 3 4 65 7
…

Writing the hop range

Problem: Location changes of hopped items
Search a key

Insert a key

A1 B1 C1 X1 D2 F5 E4 …

D2 E4

23

Reading a neighborhood

Three-level Optimistic Synchronization

Level 3: Detect the hop range write Problem: Location changes of hopped items
 Solution: Reuse the hopscotch bitmaps

A1 B1 C1 D2 E4 F5

0 1 2 3 4 65 7
…

A1 B1 C1 X1 D2 F5 E4 …

Writing the hop range

0001

0010

Writers:
Hopscotch hashing has maintained a bitmap inside
each neighborhood to track the occupancy status[1]

Readers:
• Re-construct the bitmap according to fetched keys
• Retry if the two bitmaps cannot match

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.

Insert a key

D2

D2

24

Search a key

MNs

CNs

③ Fetch the hop range

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses

Metadata KV entries

② Fetch a vacancy bitmap

Leaf Node:

① Lock the node

Lock

Insert a key

25

MNs

CNs

② Fetch the hop range
Vacancy. lock

1 bit

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
 Solution: Piggyback the vacancy bitmap

Metadata KV entriesLeaf Node: Lock

Insert a key

① Lock the node + get the bitmap

[1] NVIDIA Corporation. RDMA Aware Networks Programming User Manual v1.7. 26

Achieve this via masked-CAS [1]:
• Mask out the vacancy bitmap during

the compare
• Remove the mask during the swap

MNs

CNs

① Fetch the neighborhood

Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

Metadata KV entries

② Fetch leaf metadata

Leaf Node: Lock

Search a key

27

MNs

CNs

replicate

Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses
 Solution: Replicate the leaf metadata

KV entries

① Fetch the neighborhood
+ metadata

Leaf Node: Lock

Search a key

leaf metadata

• Insert a leaf metadata replica at the
position of every neighborhood size

28

Hotness-Aware Speculative Read

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

Search a key

Fetch the neighborhood

Problem: Still need to fetch all items within the neighborhood

… …Entry Entry Entry Entry

leaf metadata 29

Hotness-Aware Speculative Read

Hopscotch.

B+ tree
internal nodes

…
Hopscotch.

MNs

CNs

Caches

Clients …

… …Entry Entry Entry Entry

leaf metadata

Problem: Still need to fetch all items within the neighborhood
 Solution: Speculatively read the target entry

Hotspot Buffer Each buffer entry:
leaf address key index fingerprint counter

Search a key

hotspot

Speculatively read an entry

30

More Details

 Sibling-based validation
 Support for variable-sized keys and

values
 Applicability to the learned Index
 Detailed operations
 ……

31

Evaluation

10 CNs (4 GB DRAM + 64 CPU cores each)

…

1 MN (64 GB DRAM + 1 CPU core)

100 Gbps CX6 RNIC

100 Gbps CX6 RNIC

100 Gbps
Ethernet Switch

Workloads and Parameters

Comparisons

• YCSB workloads
• 8-byte keys and 8-byte values
• Limit the cache size to 100 MB per CN

• SMART [OSDI’23]
• The latest radix tree design on DM

• Sherman [SIGMOD’22]
• The classic B+ tree design on DM

• ROLEX [FAST’23]
• The latest learned index on DM

• SMART-Opt (Optimal case)
• SMART with sufficient caches

32

Performance Comparison

YCSB LOAD YCSB A YCSB B YCSB C YCSB D YCSB E

100% insert 50% read
50% update

95% read
5% update 100% read 95% read

5% insert
95% scan
5% insert

Throughput (Mops/s)

P9
9

La
te

nc
y

(x
10

 u
s)

• CHIME achieves:
• Up to 4.3x higher throughput than Sherman and ROLEX
• Up to 5.1x higher throughput than SMART
• A close performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB) 33

Factor Analysis

• Start with Sherman and apply each proposed technique one by one

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert 50% read
50% update

95% read
5% update 100% read 95% read

5% insert

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y

(u
s)

34

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y

(u
s)

Factor Analysis

• The hopscotch leaf node enables fetching the neighborhood rather than the
entire leaf node

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert 50% read
50% update

95% read
5% update 100% read 95% read

5% insert

2.3x

35

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y

(u
s)

Factor Analysis

• The vacancy bitmap piggybacking enables fetching the hop range rather than
the entire leaf node, without inducing extra remote accesses

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert 50% read
50% update

95% read
5% update 100% read 95% read

5% insert

1.6x

36

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y

(u
s)

Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert 50% read
50% update

95% read
5% update 100% read 95% read

5% insert

• The leaf metadata replication avoids the extra remote accesses of fetching
in-header leaf metadata

1.6x

37

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y

(u
s)

Factor Analysis

• The speculative read enables greedily fetching the target entry rather than the
entire neighborhood

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert 50% read
50% update

95% read
5% update 100% read 95% read

5% insert

Number of Clients

Th
ro

ug
hp

ut
 (M

op
s/

s)

1.2x

38

Conclusion

• This paper identifies the trade-off between read amplifications and cache
consumption for range indexes on DM

• We propose CHIME, a hybrid index combining the B+ tree with hopscotch
hashing to break the trade-off:
• Three-level optimistic synchronization
• Access-aggregated metadata management
• Hotness-aware speculative read

• CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar
performance with up to 8.7x lower cache consumption

39

Thank you! Q&A
https://github.com/dmemsys/CHIME

