SOSP 2024

CHIME: A Cache-Efficient and High-Performance
Hybrid Index on Disaggregated Memory

Xuchuan Luo?'?, Jiacheng Shen3, Pengfei Zuo?, Xin Wang'®, Michael R. Lyu>, Yangfan Zhou'-?

1School of Computer Science, Fudan University
’National Key Laboratory of Parallel and Distributed Computing, China
3Duke Kunshan University “Huawei Cloud °The Chinese University of Hong Kong
6Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

TN , A = »
@icrr Lanus denvawe

FUDAN UNIVERSITY

o

- O

e Chinese University of Hong Kong

Disaggregated Memory (DM)

Compute Nodes (CNs)

——————————————————————————————————

.. |
Cl R R R O | D OO
| |
NI COR [2] 1iar | ,
) —)) Benefits:

Fast Network (e.g., RDMA, CXL) v Resource utilization
Ilf(————————m: ————— . _______f_______:,, ———— :\I \/Elast|C|ty
| = O = @O |
|

| | TR TR T R ol |
| TR TR TR R R AR |
|
\ _ J _ J J

N EEE S O S DS S S DS DS BN DS B BN DS BN B G G DS B B B B DS B B e S e e e

Memory Nodes (MNs)

Range Indexes on Disaggregated Memory

Existing range indexes on DM can be classified into two types:

~

KV-discrete

Nodes

/

[\

KV

kKV

KV

~

Store KV items discretely

Radix Tree!l!

B+ Tree!2! Learned

-

KV-contiguous

Store KV items contiguously
within large leaf nodes

/ Nodes / Models \

~

[.

KV s

KV

\

KV s

KV

_/

[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.
[3] Pengfei Li et al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.

Range Indexes on Disaggregated Memory

Computing-side caches are adopted to reduce access latency:

KV-discrete KV-contiguous
h
{I"j:E CNs M Radix Tree ;ﬁ} CNs / Caches \
& VINs & MINs
Nodes B+ Tree Learned Nodes / Models \
Index

/

. KV

\

KV

Motivation: A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:

KV-discrete

KV-contiguous

high
c
ilﬁE CNs M '%_ Radix Tree . ;’ﬁg CNs / Caches \
& MINs § T, & MINs
Nodes é B+ Tree Learned Nodes / Models \
S Index
/ '/ \ low Read Amplification high / \

. KV

KV

Motivation: A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:

KV-discrete

Search A Cache an address
£ CNs Caches\ for each KV item

@ High cache

%\ consumptlon

./ % Lﬂv/rwd amp//f/cat/ons]
KV l KV

Read the single KV item

KV-contiguous
Cache an address Search
for each leaf node | Ca'_fh &5 \
{@ Low cm

consumption
/ Nodes / M\iels \
[@ High readamM I" ==
I KV | - | KV I

Read the entire leaf node

6

Motivation: A Trade-off for Range indexes on DM

Root Cause: The alignment between keys and memory addresses

~

_

KV-discrete
Key,
Key,
Keye,

min <= Key, < max (i=1,2,...,64)

I not aligned

Addr, is arbitrary

_/

~

high

on

Cache Consum

low

Radix Tree
&-
ans
O

B+ Tree Learned
Index

Read Amplification

~

(.
KV-contiguous
Leaf node:
Key, | Key, Keye,

min <= Key, < max (i=1,2,...,64)

I aligned

Addr, <= Addr, < Addr, + leaf_size

Motivation: A Trade-off for Range indexes on DM

Root Cause: The alignment between keys and memory addresses

Search

;:l,::l:ECS

)ﬁ MNs

/ Nodes/Mod s

KV s

KV

ﬁ (%) But is too imprecise to cl/ents}
O

Use hashing to
make it precise?

—

KV-contiguous

/ Cachgs \ H@ Can compress the cache% Leaf node:

~

Key,

Key,

Keye,

_

min <= Key, < max (i=1,2,...,64)

I aligned

Addr, <= Addr, < Addr, + leaf_size

Straightforward Idea

Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes

g Hybrid Index

* KV-contiguous
* Precise alignment

B+ tree
internal nodes

~

/

KHash table

\

Hash table

_/

high

che Consumption

low

Radix Tree
&
.

s\\'\(\Q (o)

Requirements:

~

e
e
~ B+ Tree Learned\

Index

Read Amplification

Few remote accesses
Low read amplifications
High space efficiency p

high

Widely Choose a Suitable Hashing Scheme

Remote accesses Read amplifications & Space efficiency

Many accesses: X ~ 100
e Cuckoohashing | — [~
* Clustering hashing 0

%

B+ tree
—A— Hopscotch

o
-ld .
* L 60 internal nodes
S —— FaRM / \
/Lg 40 - Associativity oo
Few accesses: ‘/ - o— RACE Hash table Hash table
e Simple associativit © 20 1 . . .
P y = 4 8 12 16 20

* Hopscotch hashing!!!

e FaRMU
e RACE! [@ Hopscotch hashing best fits the requirements]

Amplification Factor

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.
[2] Aleksandar Dragojevic et al. FARM: Fast Remote Memory. NSDI 2014.

[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory. ATC 2021. 10

Viable Idea

Use a hybrid index combining a B+ tree with hopscotch hashing

_

_

a . "\ high
Hybrid Index
c
* KV-contiguous %_
* Precise alignment £
* High load factor §
2
B+ tree =
internal nodes
/ 000 \ IOW
Hopscotch. Hopscotch.

Radix Tree

*

Index

Read Amplification

high

©) Benefit:

v’ Cache-efficient
v’ Bandwidth-efficient
v’ Space-efficient

11

Challenge 1: Complicated Optimistic Synchronization

Various granularities in reads/writes complicate the optimistic synchronization

99 5
...and so on
Caches hood
5:6

2 3 4

: 7
%ACAIXIS ‘& A1|B1|Ci|D2|Esa| Fs
‘ 5 Insert a key X1 "',\"/‘\M",‘ hopping
B+ tree S
internal nodes A1 |B1|Ci| X1 |D2| Fs| Ea|
—————
Hopscotch. j_Hopscotch. i; QOP range " \wirite a hop range

Write an entire node
to split the node

to insert a key

Challenge 1: Complicated Optimistic Synchronization

Various granularities in reads/writes complicate the optimistic synchronization

C/ientsgs g

B+ tree
internal nodes

Read a neighborhood
to search a key

/e O\

Hopscotch. Hopscotch.

Check
Data Block:

A8

Invisible to fine-grained

neighborhood reads]

Versions / Checksum ------

Ma/nta/n<£

Write an entire node
to split the node

@ Difficult to maintain for
various hop range writes

|

Write a hop range
to insert a key _

Challenge 2: Extra Metadata Accesses

Metadata for B+ trees and hopscotch hashing induces extra remote accesses

Clients g s g Search a key
[@ Extra remote memory / /

accesses to fetch metadata | ro.-p leaf metadata Fetch the neighborhood

e T VA

/| Metadata KV entries |
/tre\ /////// \ T
internal nodes .~/ Fetch a vacancy bitmap Fetch the hop range

Hopscotch. Hopscotch. ! \ \
Insert a key

14

Challenge 3: Read Amplifications of Hopscotch Hashing

Hopscotch hashing still incurs read amplifications compared with reading a KV

Clients g g g
Search a key Xi
m N\

Fetch the neighborhood

#]}CNS ‘& . §

/| Metadata A1 | Bi C1@ D>

B+ tree ’

internal nodes S
/ \ 7 [@ Still need to fetch all items

Hopscotch. Hopscotch. |- within the neighborhood

15

Challenge Summary

C/ientss s

5

B+ tree
|nternal nodes

Hopscotch

Hopscotch

[1. Complicated Optimistic Synchronization]

[2. Extra Metadata Accesses]

[3. Read Amplifications of Hopscotch Hashing]

The CHIME Design

. g s g [1. Complicated Optimistic Synchronization]
Clients
Solution 1: Three-Level Optimistic Synchronization
Hotspot Buffer
i".'..:"} CNs [2. Extra Metadata Accesses]
& VINs

Solution 2: Access-Aggregated Metadata Management

CHIME
/m\
internal nodes [3. Read Amplifications of Hopscotch Hashing]

' Hopscotch. Hopscotch. | | Solution 3: Hotness-Aware Speculative Read

17

Three-level Optimistic Synchronization

Synchronization Overview

Reade/rs gs P Writersls s -

Neighborhood read Node write Entry write Hop range write

= : ———

- Readers detect node/entry/hop range writes, respectively

Decompose it into
three levels

Writers are synchronized by a lock

v v v

Leaf Node: KV entries

18

Three-level Optimistic Synchronization

Level 1: Detect the node write Problem: Readers cannot perceive the node write

Search a key

Reading a neighborhood
Node:

KV entries

Writing the entire node
7
Split the node

19

Three-level Optimistic Synchronization

Level 1: Detect the node write Problem: Readers cannot perceive the node write

4 [1]
Search a key =>» Solution: Use cache line versioning

Readers:
| * Check only fetched versions
* Retry if they cannot match

Reading a neighborhood (~

Cache Line

Writers:
* Increment all versions in the node

Writing the entire node
7
Split the node

[1] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014. 20

Three-level Optimistic Synchronization

Level 2: Detect the entry write Problem: Writers have to update all versions in the node

Search a key

Reading a neighborhood

Cache Line

Writing an entry
Update a key d

21

Three-level Optimistic Synchronization

Level 2: Detect the entry write Problem: Writers have to update all versions in the node
=» Solution: Use two-level cache line versioning

Search a key

\

Reading a neighborhood Readers:
* Check the node write via NVs

Node: e Check the entry write via EVs)
Ver.

~N

Writers:
* Increment NVs during a node write

* Increment EVs during an entry write/

Cache Line

Writing an entry el oAbt 45

.| NV | EV
Update a key -) ,

Three-level Optimistic Synchronization

Level 3: Detect the hop range write Problem: Location changes of hopped items
Search a key

Reading a neighborhood

Writing the hop range

Insert a key ~

23

Three-level Optimistic Synchronization

Level 3: Detect the hop range write Problem: Location changes of hopped items
Search a key - =» Solution: Reuse the hopscotch bitmaps
Reading a neighborhood

|0010%_ | _ﬁReaders: A
0 - I * Re-construct the bitmap according to fetched keys

AN B1 F5l * Retry if the two bitmaps cannot match y
l N
0001 (Writers:
Hopscotch hashing has maintained a bitmap inside
“ A ‘ each neighborhood to track the occupancy status!!] y

Writing the hop range
Insert a key ~

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008. 24

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
Insert a key
Lk CNs \
o MINs /
@ Lock the node

(2 Fetch a vacancy bitmap
() Fetch the hop range

v

v —
Leaf Node: | Metadata KV entries Lock

25

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
=» Solution: Piggyback the vacancy bitmap

Insert a key
ik ~AIc

Achieve this via masked-CAS !1):
* Mask out the vacancy bitmap during \ (1) Lock the node + get the bitmap

the compare él

* Remove the mask during the swap
\. Vacancy. |lock
(2 Fetch the hop range ~~._ 1bit |
Leaf Node: | Metadata KV entries Lock

[1] NVIDIA Corporation. RDMA Aware Networks Programming User Manual v1.7. 26

Access-Aggregated Metadata Management

Metadata for the B+ tree

Problem: Leaf metadata induce extra accesses

Search a key

/

(2 Fetch leaf metadata

Leaf Node:

Q) Fetch the neighborhood

/

M

Metadata

KV entries

Lock

27

Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

=>» Solution: Replicate the leaf metadata

{00E CNs
* Insert a leaf metadata replica at the I

Search a key

position of every neighborhood size Q) Fetch the neighborhood

+ metadata
leaf metadata ,
/ L
Leaf Node: | ! k V EIin'I‘iE’S Lock
N

replicate -

Hotness-Aware Speculative Read

Problem: Still need to fetch all items within the neighborhood

{LE CNs
& MINs Search a key
Fetch the neighborhood
B+ tree ‘t
internal nodes
/ (X Y] \ _______ r P
Hopscotch. Hopscotch. | —_____ - | Entry | Entry | Entry \\ Entry | «--

leaf metadata .

Hotness-Aware Speculative Read

Problem: Still need to fetch all items within the neighborhood

Clients 6 6 s =>» Solution: Speculatively read the target entry
Search a key
m R
——mm———mm 7 N\
Hotspot Buffer | Each buffer entry: |
{l:j} CNs .
I
I

I
=2 : leaf address | key index | fingerprint | counter

B+ tree Speculatively read an entry
mternal nodes ‘L

-
-
-
-

Entryi Entry E Entry | /| Entry

_____________ N\

hOtSPOt leaf metadata

Hopscotch Hopscotch

30

More Details

»
mmmm_”
AL i pmn‘;:r Leaf Node (Unoptimized): = E
7 B - --- 88

L mode (Unoptimized)
Level versions, TesP!

uced in Section 4.2 ,
keys|

“ Regd Keys status(t
= 0010

o ectively. For
and entry-
ill be introd

a8 - 5B
“sibling pointer. “child pointer_
o “eaatnode-level
(@) The ntexnal N -
NV an o
- ure 6. The node structures of CH\A:.E\ Tth ;
Figure € che line versions are omitiec:
brevity.

tande

[. o .
Siblir 1g-based validation
. .
Support for variable-sized keys an
- crsions for detecting 14
(@) Tworlevel cache ine ¥¢ i o] X"Chuan L“O;Y o ‘
find that 1)f ~Heng Shepd e
J Sch, "
J Nati . "S¢hool o ¢, n
Duke Kung, Z'Iﬂ[Key Lab"’”tar Omputey Stience, Fud
n ity HJ’ f Paraljes o, 4 Dr [aZ Universy,,
p o Stributeq

ns when they fin ‘
e match, or 2 for any €

their read oper:
a
/ . oje Jevel versions L\Amwt‘:: i the entry
Q evel vers
r n the entry-level ve s in Shef Sh
o same d-bit versio ang),
We use the same cxite conflicts.T i Key [qp, Uawej ¢
p p I Ca I Ity to t e e a e I I l eX ¢\lf‘itl"“‘“’hand\;.“j:ll;:::.,v,\fhrumzv :bsfracg ”'"fafyqf'lnrelllge:fl;d "The Chinegy g P78, Ching
eachno isaggre, nfory Miversis,, .
operations o te operation and Sregated ‘Mation p, ersity o,
. e cente, cmory Pocess;, Hong
ill be only one Wrile Center archjp, OV (DM) essin ¢ Koy
will be only 086 e version numbf compuitecture 7 OV is a gy 'S Shangha; ¢y "
read operatio n vitmsdl P f““ng and mep, “ademig 4 indj Y discusseq data, tigh L Ching
scotch bitn 0 tWo nefy, 1Y resourceg . AUSUY. It goc. - . 5
H H 412 “”““dh:fmm hop rang/ amwumv‘.f.;l"”k'tonncucd,l:.(“ffommunnmhdf“"""“‘ £ [(edrree
cannot detect ¢O s ofhop locate gy - 2oPted by torage Source oy Ran, e servers 28 9. SMART). 4, ?
able SiZes ry sys - Range i g, 3 0 er
Japping and ‘:V\L e aows o dexeg o D‘e!u:?rp,,,% ey Hmm on DAy B_H]’:’<'tx(.5 53 s j
to maintait. A opping from somsumprign oyt O cither gy VT EXisting) §[crme i
Keys E ap inside his pape, igh mepy 2 compyy, 8¢ in-) (e. Le
g tch bitmap aper, yo 101y -gide g-side o low 9. Shermapy Leamed
5. The hopsco! ol B+ tree, Propose ¢ le read g5 ide cache Index
.d from 001 e with I, HIME Amplificyy, n P
entry 2) is update u 0pscotcp, 1. IE: a hyp, ations, | . low (€2, Rog,
t::‘fhud entry from its home ¢ ul-n,‘fn”" ~'mlh,wn-:.k1[h hashing, ¢, ic}:d index ""mbmm: Figure 1 The trag, Rgad"”hlinnr =
tmaps if € three gy amplificy; eve low caqy amplifieqyio Fde-0fT hepy, ion P
h updated bi allenge, ations ache ¢, Cations f, etween ioh
range wit o complies 5 it con, imultag, on. 1S for o cache
current reads ated opy, Structing cously, 1y, 1 Xisting [y, Onsumy
4 WRITE. Coneur b | accesg, , imi, g CHIME here Introgyey: '8 DM range i Plion and e, g
e. resulting in an in hasr S and the ey ronjzayj °n DM, ; T Uctiop, Ndexes [37 g, . X
R the wiite resulting i1 20 ashins ad ampy on, the o DM e, he diggy 2 36, 5]
d keys as hop 8. CHIME |, ication Xlra mey, '88regateq
storing hopped keYs 8% 100 nizati, leverages Ntrodyceq adaty discy,
2 hop range € " scheme §, S 1)@ thre. Y hops, due to jtg arc]
ftems withina ¢ With v 0 Synchre Vel optipm tch tilizagi, S pote,
compos atious gryt . istic 5y, ion [2, 2 .
ek can be decompos Manggeme Sranulagiticg "€ Tead ang gy 1€ SVrchrp, oo (2 21,28, 43 g5 ro, g Widel,
hecks. The former is sol¥f by pign ™ €Chnique) 47 GcCess gy 1 PeTations oy port " SOUTCes ingg gy 1 decoupi “Source
- s, we of Bybacl © elimipg S8regate, bools 4
sosed above. Thus, we tive hage KNG and pep © UIAIE extr ey g Meladaty Infinign " Merconpg com uting ang
P e location ¢Bf INESs-qyy, Plicating ‘adatg 4, and [6] , cts and
detecting the loc y the reag gy 1" SPeculariy, 'S metadyy, |, ‘Ceesses Range g 4 compuge o o e
To address this :ssu:,' tesulty iy Plificationg o o Sf«admgh s ¢, e tems opy m;(m[32, 36, 5 Press iy, {:Viu'ks' eg
antees that the hom Tange gonW that ¢, PSCOh hghing o (© Mitigate 51-53) g €8 database sty L1
e fer from | sine pyiesces o 1 Otperfoyy 6 Experimengyy g >k They are o 45 40 Keyyap 9 O Storage o
atry is originally § cache ppchieses iy ' 10 5.1 i €O the ar o oo Pactcg] o V) stores s 35,
e iz € cong, Similar perg, e same e co, rang, 30,
algorithm prioritizes ces NSUmptig, Petformanc, with L s;n.(che d“]’)hﬂm’lhumpnuu 32,5 ; and rapg,
ated S ¢, 0 8.7 Iow, b ifications 3" uting.
cach hop, as St oncepys. , Wer Write gy 30 56] are g-side
ries in Figure 7b Storage; Dagy sxn_.ln,ﬁ"'““"bn Syste Pulmg«?r’zlymc"“"m \v.‘\l:m ite
. Ctureg ms —, . . “ v - L read 4
of D differs from Keyworgs, D, res. D'“"butcd Fange ey oo ‘:r) pools, 4 read ang
Bt Tree, gy o8™e8ated My, Bigh thrgygy > SHOUId mip Som-
Pa €leh Hashipg O™ RDMA, gy Part of g o DU (24, 36], gepn 2y ited,
Jermision g U Indes, compupit B st <M ieve
Persona} o, 3 uting ure
E not gy o Versals ;47{ f’ﬂ;)l 10 redyce S Cache
Copics o ed withgyy O PArt of thiy ; + 32,36, 5 S in the
s beay 0t o gt 1 provigq WOk for “OMSUmpti due to g ¢ Pexe indey
“Ompone i) pgr 4 that copien Inforty. 0 the [y " index ¢r,.
be tato dvant, tunatel, nite ed
v ° hoore by o B st g 5 0t chieye oy o1 CXisting gy, uce cache
epublig, b others € Copyrig . roache.
X » han the ahts o om, e y.
Permisgiop ! Permitteq. g, ¢, Whor(s) Memory., ! e
5P 23 e et T Oy ot ™5 e ey Tead aeously
02024 Cop 46 2024 g, b SSi0ns oy, TS Priorspeci” Range jnges < the a
24 Copyrigh , ustin, 7y Permission ific ndexe,
to ACyy cld by the Usq S@acin opg, Le, thoge ¢ 1 DM ca p,
Acm v et authoy) el tstore S
i N 07y, O Pl el o). Discrgay, s co
YOLOMB/10 114535017 icensed reduces ropg Clely storing
4715 3695959 @ unigu e Aplificajop, mzz:(vmm e,
ever, they, g Address o - €2h
tion singg 1€t fom higy oo 2eCessed gy ° PaPPed 1o
5 need g pap P Uing-ige g s Ually. oy,
€ an ade che cop,
55 for eqep, o ONSUMp-
hKV ifem, 1

110

Evaluation

Workloads and Parameters

YCSB workloads
8-byte keys and 8-byte values
Limit the cache size to 100 MB per CN

Comparisons
SMART [OSDI’23]

The latest radix tree design on DM

Sherman [SIGMOD’22]

The classic B+ tree design on DM

ROLEX [FAST’23]

The latest learned index on DM

SMART-Opt (Optimal case)

SMART with sufficient caches

10 CNs (4 GB DRAM + 64 CPU cores each)

100 Gbps
Ethernet Switch

1 MN (64 GB DRAM + 1 CPU core)
32

Performance Comparison

P99 Latency (x10 us)

N SV
(0)} O
L 1 L]

=
w
1

o

YCSB LOAD YCSB A YCSB B YCSB C YCSB D YCSB E
50% read 95% read 95% read 95% scan
100% i 1009 . .
00% insert 50% update 5% update 00% read 5% insert 5% insert
99 1 48 12 7 24 27 1
—— CHIME . Sherman —e— ROLEX — - SMART-Opt _
16 - 18

—————————

CHIME achieves:
 Up to 4.3x higher throughput than Sherman and ROLEX

51

0 20 40

Throughput (Mops/s)

 Upto5.1x higher throughput than SMART
* Aclose performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB)

33

Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ (o)
100% insert 50% update 5% update 100% read 5% insert
Sherman

wv 60

3 —O— P50 Latenc A~ P99 L L 103
Q. y atency 10 =
S A S
S 409 4 >
5 A : §
< 204 © o 107 8
S O O O 5
S

o H i

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

e Start with Sherman and apply each proposed technique one by one

Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ (o)
100% insert 50% update 5% update 100% read 5% insert
Sherman

I +Hopscotch leaf node

u 60
3 —O— P50 Latenc -~/ P99 L =103
Q. ncy atency 10 =
O \\

A S
E 40- A,A A\\A a
.'S 2.3XTA\ 102 Q:J
S i
S 209 9F ql;u Q Ra 3
S
| .
S 0 N, | - H] 10t

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

* The hopscotch leaf node enables fetching the neighborhood rather than the
entire leaf node

Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ (o)
100% insert 50% update 5% update 100% read 5% insert
=] Sherman

I +Hopscotch leaf node
E] +Vacancy bitmap piggybacking

» 60

3 —O— P50 Latenc -~/ P99 L =103
Q ncy atency 10° —
S 40 A A ~
= A AA A §
S \ 2
Q. -~ - 102 ©
‘§ 20 1 O{&31.6x RQJE %%g Q@E 3
o l_@ Ij I

|

g lmmr QNH i |

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

* The vacancy bitmap piggybacking enables fetching the hop range rather than
the entire leaf node, without inducing extra remote accesses

Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ 1)
100% insert 50% update 5% update 100% read 5% insert

=] Sherman
I +Hopscotch leaf node
E] +Vacancy bitmap piggybacking

M +Leaf metadata replication

60

8 —O— P50 Latency -~ P99 Latency 1.6 T - 10° —

§ | A‘A\ A ° x [\:_

= 40 A’A A \ T >

= AN 5] ' Q
¥ A H <

3 x wnfl F107 g

S 20- 0%0 QHE% olllHE \ QIHE | 3

= == Si=i

S E sl ﬁ |

[\l L a

E 0 NFHE ﬂ : H o Al H 101

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

* The leaf metadata replication avoids the extra remote accesses of fetching
in-header leaf metadata

Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
: 50% read 95% read 95% read
100% insert P . 100% read e
50% update 5% update 5% insert
= Sherman E +Leaf metadata replication
I +Hopscotch leaf node] +Speculative read (CHIME) _
3 +Vacancy bitmap piggybacking e ﬁ@ 60 \
» 60 IPtae X | I
N LsF* Q 50-
3 —O— P50 Latgncy ~/x- P99 Latency --" - 103 = §) 1.ZXT
O N — [7
i AT _ I \:_. ~ 40 -
S 40 N AN A @ NN N £ ~ — SMART-Opt
5 N A TSl L 102 § S 30- —— CHIME w/ SR
< 20- O%oo : =1 £ S —3¢ CHIME w/o SR
S Q ‘ SIANE RIS S 20
S E ‘ I TS S S 80 220 360 500 640
= NHIE I . MlritIS I SRl >

=
o
=
/
/
4
T

YCSBLOAD YCSBA YCSBB YCSBC YCSBD Number of Clients /

* The speculative read enables greedily fetching the target entry rather than the

entire neighborhood -

Conclusion

* This paper identifies the trade-off between read amplifications and cache
consumption for range indexes on DM

* We propose CHIME, a hybrid index combining the B+ tree with hopscotch

hashing to break the trade-off:

* Three-level optimistic synchronization
* Access-aggregated metadata management
 Hotness-aware speculative read

 CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar
performance with up to 8.7x lower cache consumption

SOSP 2024

Thank you! Q&A

@ https://github.com/dmemsys/CHIME

HEF XLKREF

o ¢ The Chinese University of Hong Kong

\)N”ls A
> 7 2 !)
= {’Z q) & B 11 kL 5k
S C - DUKE KUNSHAN
7552 FUDAN UNIVERSITY UNIVERSITY

