SOSP 2024

CHIME: A Cache-Efficient and High-Performance
Hybrid Index on Disaggregated Memory

Xuchuan Luo?'?, Jiacheng Shen3, Pengfei Zuo?, Xin Wang'®, Michael R. Lyu>, Yangfan Zhou'-?

1School of Computer Science, Fudan University
’National Key Laboratory of Parallel and Distributed Computing, China
3Duke Kunshan University  “Huawei Cloud  °The Chinese University of Hong Kong
6Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

TN , A = »
@icrr Lanus denvawe

FUDAN UNIVERSITY

o

- O

e Chinese University of Hong Kong




Disaggregated Memory (DM)
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Range Indexes on Disaggregated Memory

Existing range indexes on DM can be classified into two types:
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[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.
[3] Pengfei Li et al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.



Range Indexes on Disaggregated Memory

Computing-side caches are adopted to reduce access latency:
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Motivation: A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:
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Motivation: A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:
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Motivation: A Trade-off for Range indexes on DM

Root Cause: The alignment between keys and memory addresses
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Motivation: A Trade-off for Range indexes on DM

Root Cause: The alignment between keys and memory addresses
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Straightforward Idea

Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes

g Hybrid Index
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Widely Choose a Suitable Hashing Scheme

Remote accesses Read amplifications & Space efficiency

Many accesses: X ~ 100
e Cuckoohashing | — [~
* Clustering hashing 0
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-ld .
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S —— FaRM / \
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Few accesses: ‘/ - o— RACE Hash table Hash table
e Simple associativit © 20 1 . . .
P y = 4 8 12 16 20

* Hopscotch hashing!!!

e  FaRMU
e RACE! [ @ Hopscotch hashing best fits the requirements]

Amplification Factor

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.
[2] Aleksandar Dragojevic et al. FARM: Fast Remote Memory. NSDI 2014.

[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory. ATC 2021. 10



Viable Idea

Use a hybrid index combining a B+ tree with hopscotch hashing
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Challenge 1: Complicated Optimistic Synchronization

Various granularities in reads/writes complicate the optimistic synchronization
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Challenge 1: Complicated Optimistic Synchronization

Various granularities in reads/writes complicate the optimistic synchronization
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Challenge 2: Extra Metadata Accesses

Metadata for B+ trees and hopscotch hashing induces extra remote accesses
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Challenge 3: Read Amplifications of Hopscotch Hashing

Hopscotch hashing still incurs read amplifications compared with reading a KV

Clients g g g
Search a key Xi
m N\
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Challenge Summary
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[ 1. Complicated Optimistic Synchronization]

[ 2. Extra Metadata Accesses]

[ 3. Read Amplifications of Hopscotch Hashing]




The CHIME Design

. g s g [ 1. Complicated Optimistic Synchronization]
Clients
Solution 1: Three-Level Optimistic Synchronization
Hotspot Buffer
i".'..:"} CNs [ 2. Extra Metadata Accesses ]
& VINs

Solution 2: Access-Aggregated Metadata Management

CHIME
/m\
internal nodes [ 3. Read Amplifications of Hopscotch Hashing]

' Hopscotch. Hopscotch. | | Solution 3: Hotness-Aware Speculative Read
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Three-level Optimistic Synchronization

Synchronization Overview

Reade/rs gs P Writersls s -

Neighborhood read Node write Entry write Hop range write

= : ———

- Readers detect node/entry/hop range writes, respectively

Decompose it into
three levels

Writers are synchronized by a lock

v v v

Leaf Node: KV entries
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Three-level Optimistic Synchronization

Level 1: Detect the node write Problem: Readers cannot perceive the node write

Search a key

Reading a neighborhood
Node:

KV entries

Writing the entire node
7
Split the node

19



Three-level Optimistic Synchronization

Level 1: Detect the node write Problem: Readers cannot perceive the node write

4 . . . . [1]
Search a key =>» Solution: Use cache line versioning

Readers:
| * Check only fetched versions
* Retry if they cannot match

Reading a neighborhood ( ~

Cache Line

Writers:
* Increment all versions in the node

Writing the entire node
7
Split the node

[1] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014. 20



Three-level Optimistic Synchronization

Level 2: Detect the entry write Problem: Writers have to update all versions in the node

Search a key

Reading a neighborhood

Cache Line

Writing an entry
Update a key d

21



Three-level Optimistic Synchronization

Level 2: Detect the entry write Problem: Writers have to update all versions in the node
=» Solution: Use two-level cache line versioning

Search a key

\

Reading a neighborhood Readers:
* Check the node write via NVs

Node: e Check the entry write via EVs )
Ver.

~N

Writers:
* Increment NVs during a node write

* Increment EVs during an entry write/

Cache Line

Writing an entry el oAbt 45

.| NV | EV
Update a key - ) ,




Three-level Optimistic Synchronization

Level 3: Detect the hop range write Problem: Location changes of hopped items
Search a key

Reading a neighborhood

Writing the hop range

Insert a key ~
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Three-level Optimistic Synchronization

Level 3: Detect the hop range write Problem: Location changes of hopped items
Search a key - =» Solution: Reuse the hopscotch bitmaps
Reading a neighborhood

|0010%_ | _ﬁReaders: A
0 - I * Re-construct the bitmap according to fetched keys

AN B1 F5l * Retry if the two bitmaps cannot match y
l N
0001 (Writers:
Hopscotch hashing has maintained a bitmap inside
“ A ‘ each neighborhood to track the occupancy status!!] y

Writing the hop range
Insert a key ~

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008. 24



Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
Insert a key
Lk CNs \
o MINs /
@ Lock the node

(2 Fetch a vacancy bitmap
() Fetch the hop range

v

v —
Leaf Node: | Metadata KV entries Lock

25



Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
=» Solution: Piggyback the vacancy bitmap

Insert a key
ik ~AIc

Achieve this via masked-CAS !1):
* Mask out the vacancy bitmap during \ (1) Lock the node + get the bitmap

the compare él

* Remove the mask during the swap
\. Vacancy. |lock
(2 Fetch the hop range ~~._ 1bit |
Leaf Node: | Metadata KV entries Lock

[1] NVIDIA Corporation. RDMA Aware Networks Programming User Manual v1.7. 26



Access-Aggregated Metadata Management

Metadata for the B+ tree

Problem: Leaf metadata induce extra accesses

Search a key

/

(2 Fetch leaf metadata

Leaf Node:

Q) Fetch the neighborhood

/

M

Metadata

KV entries

Lock
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Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

=>» Solution: Replicate the leaf metadata

{00E CNs
* Insert a leaf metadata replica at the I

Search a key

position of every neighborhood size Q) Fetch the neighborhood

+ metadata
leaf metadata ,
/ L
Leaf Node: | ! k V EIin'I‘iE’S Lock
N

replicate -



Hotness-Aware Speculative Read

Problem: Still need to fetch all items within the neighborhood

{LE CNs
& MINs Search a key
Fetch the neighborhood
B+ tree ‘t
internal nodes
/ (X Y] \ _______ r P
Hopscotch. Hopscotch. | —_____ - | Entry | Entry | Entry \\ Entry | «--

leaf metadata .



Hotness-Aware Speculative Read

Problem: Still need to fetch all items within the neighborhood

Clients 6 6 s =>» Solution: Speculatively read the target entry
Search a key
m R
——mm———mm 7 N\
Hotspot Buffer | Each buffer entry: |
{l:j} CNs .
I
I

I
=2 : leaf address | key index | fingerprint | counter

B+ tree Speculatively read an entry
mternal nodes ‘L

-
-
-
-

Entryi Entry E Entry | /| Entry

_____________ N\

hOtSPOt leaf metadata

Hopscotch Hopscotch
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More Details
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Evaluation

Workloads and Parameters

YCSB workloads
8-byte keys and 8-byte values
Limit the cache size to 100 MB per CN

Comparisons
SMART [OSDI’23]

The latest radix tree design on DM

Sherman [SIGMOD’22]

The classic B+ tree design on DM

ROLEX [FAST’23]

The latest learned index on DM

SMART-Opt (Optimal case)

SMART with sufficient caches

10 CNs (4 GB DRAM + 64 CPU cores each)

100 Gbps
Ethernet Switch

1 MN (64 GB DRAM + 1 CPU core)
32



Performance Comparison

P99 Latency (x10 us)
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CHIME achieves:
 Up to 4.3x higher throughput than Sherman and ROLEX

51

0 20 40

Throughput (Mops/s)

 Upto5.1x higher throughput than SMART
* Aclose performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB)
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Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
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100% insert 50% update 5% update 100% read 5% insert
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e Start with Sherman and apply each proposed technique one by one



Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ (o)
100% insert 50% update 5% update 100% read 5% insert
Sherman

I +Hopscotch leaf node

u 60
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S 0 N, | - H ] 10t

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

* The hopscotch leaf node enables fetching the neighborhood rather than the
entire leaf node



Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ (o)
100% insert 50% update 5% update 100% read 5% insert
=] Sherman

I +Hopscotch leaf node
E] +Vacancy bitmap piggybacking
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YCSB LOAD YCSB A YCSB B YCSB C YCSB D

* The vacancy bitmap piggybacking enables fetching the hop range rather than
the entire leaf node, without inducing extra remote accesses



Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
50% read 95% read 95% read
o/ 1 )
100% insert 50% update 5% update 100% read 5% insert

=] Sherman
I +Hopscotch leaf node
E] +Vacancy bitmap piggybacking

M +Leaf metadata replication
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* The leaf metadata replication avoids the extra remote accesses of fetching
in-header leaf metadata



Factor Analysis

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
: 50% read 95% read 95% read
100% insert P . 100% read e
50% update 5% update 5% insert
= Sherman E +Leaf metadata replication
I +Hopscotch leaf node ] +Speculative read (CHIME) _
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* The speculative read enables greedily fetching the target entry rather than the

entire neighborhood -



Conclusion

* This paper identifies the trade-off between read amplifications and cache
consumption for range indexes on DM

* We propose CHIME, a hybrid index combining the B+ tree with hopscotch

hashing to break the trade-off:

* Three-level optimistic synchronization
* Access-aggregated metadata management
 Hotness-aware speculative read

 CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar
performance with up to 8.7x lower cache consumption
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Thank you! Q&A

@ https://github.com/dmemsys/CHIME
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